RPG Character Mecanim Animation Pack ReadMe

Last Updated 2017-10-25

Hey, first off thanks for purchasing and using this pack! It is highly recommended to
watch Unity’s Animation Tutorial Videos before using this asset.

Installation

Before attempting to use the pack, you must first ensure that the tags and inputs are
correctly defined. There is an included InputManager.asset included in the
InputManager.zip file that contains all the settings. Copy these to your ProjectSettings
folder.

Here’s a video showing how to setup your own custom character using the RPG Character
animations: https://www.youtube.com/watch?v=I18V6SL70Oy5M

If your character’s proportions differ enough from the default character that the model’s hands
no longer place correctly on weapons properly, there’s an included IKHands script that allows
using IK to snap the hands to the correct positions. A video here shows its use:
https://www.youtube.com/watch?v=06B8KrfQg9s

The basic movement attributes of the character can be modified via values in the Inspector, as
well as many other parameters such as jumping and rolling.

http://unity3d.com/learn/tutorials/topics/animation
https://www.youtube.com/watch?v=I8V6SL7Oy5M
https://www.youtube.com/watch?v=o6B8KrfQg9s

@ Inspector | S
4 B RPG-Character []static = |~
Tag | Player % | Layer [Default 4|
Prefab | Select | Revert | Apply |
¥ .~ Transform [l %
Position X0 YO | 21-2.5
Rotation X 0 Y O 20
Scale 1 ¥i1 Zil

¥ @ [RPG Character Controller {Scripﬁ i,

Script fr RPGCharacterContro @
Target Target 0]
Gravity -9.8

Jump Speed 9

Doublejump Speed 10

In Air Speed 8

Roll Speed 8

Rollduration 0.5

Walk Speed z

Run Speed 8

Knockback Multiplier 7

Physics are generally used to move the
character, with some attack and special
movement animations switching over to Root
Motion to let the animations drive the
translation so there’s minimal feet slipping.

Knockback Multiplier is a force that is
directional force that is applied to the character
when the GetHit animations are played, and
correspond to front, left/right, and back
directions.

Control inputs are all handled in Update() or
referenced methods. FixedUpdate() contains
all the physics dependant functions.
LateUpdate() handles all the calls to the
Animator. Velocity X and Velocity Z
parameters in the Animator are where the local
movement values control the animator for
directional movement animations.

UpdateMovement() is where all the movement processing of the character is handled, and it
uses CameraRelativelnput() to make all directions based off the camera. Character faces the
movement direction via RotateTowardsMovementDir(), which becomes disabled when

characters are strafing.

All the jumping methods use CheckForGrounded() to determine if the character is on the
ground to set whether it can jump, etc. There’s a fallDelay variable you can use to prevent the
character from transitioning into a fall state when walking over small bumps, or walking down

declines.

(canMove && i

r
L

entInput

If you wish to remove Jumping, Rolling, or Blocking from your character's actions, you can
remove these code lines. AirControl can also be removed by deleting AirControl().

Rolling() allows freedom of movement when rolling, and then picks the closest corresponding
rolling animation to play. The GUI commands for rolling are based off the direction the
character is facing, and you can use these if you don’t wish to allow rolling in any direction.

Coroutine _LockMovementAndAttack() is used by attacks and other action animations, which
locks input and movement, while also enabling Root Motion on the Animator.

Coroutine _SwitchWeapons() handles all the weapon switching logic and is based off a
weapon integer value, and also off leftWeapon,rightWeapon, and LeftRight variables in the
Animator.

//0 = No side
/M = Left

/12 = Right
/13 = Dual

/lweaponNumber 0 = Unarmed
/lweaponNumber 1 = 2H Sword
/lweaponNumber 2 = 2H Spear
/lweaponNumber 3 = 2H Axe
/lweaponNumber 4 = 2H Bow
/lweaponNumber 5 = 2H Crowwbow
/lweaponNumber 6 = 2H Staff
/lweaponNumber 7 = Shield
/lweaponNumber 8 = L Sword
/lweaponNumber 9 = R Sword
/lweaponNumber 10 = L Mace
/lweaponNumber 11 = R Mace
/lweaponNumber 12 = L Dagger
/lweaponNumber 13 = R Dagger
/lweaponNumber 14 = L ltem
/lweaponNumber 15 =R Iltem
/lweaponNumber 16 = L Pistol
/lweaponNumber 17 = R Pistol
/lweaponNumber 18 = Rifle
/lweaponNumber 19 == Right Spear
/lweaponNumber 20 == 2H Club

Directional Aiming is handled by the following variables which are updated in the Animator via
the DirectionalAiming() method:

public float aimHorizontal;
public float aimVertical;
public float bowPull;

All the iputs are handled in Inputs() to make it easy to swap in your own control scheme:

void Inputs () {

//Input abstraction for easier asset updates using outside
control schemes

inputJump = Input.GetButtonDown ("Jump") ;
inputLightHit = Input.GetButtonDown ("LightHit")

Note that there are animation events for all animations, and you’ll need methods in a script
attached to the same component as the Animator otherwise you’ll get warnings.

//Placeholder functions for Animation events
public void Hit () {

}
public void Shoot () {

}
public void FootR() {

}
public void FootL () {

}

public void Land() {

}

public void WeaponSwitch () {
}

Any questions about the Pack, please Email.

Thank you!

FLOSIVE

http://www.explosive.ws/community/contact
http://www.explosive.ws/

